Stat 201: Introduction to Statistics

Standard 19: Probability Distributions - Binomial

Let's Apply This to Categorical Variables: The Binomial Distribution

- We look at a categorical variable with two outcomes
- We consider one a success and zero a failure

x		$P(x)$
Success (denoted as 1)	This is what we're interested in, even if it isn't particularly successful in the sense of the English word	$p=$ Probability of a 'success'
Failure (denoted as 0)	This is the other case - what we aren't interested in ,even if it isn't particularly a failure in the sense of the English word	$q=$ Probability of a 'failure' = 1-p

The Binomial Distribution

- The Binomial Distribution Assumptions

1. It consists of \mathbf{n} trials with binary output

- They are denoted 1 or 0 , or success and failure

2. The probability of success on each trial is the same

- The trials are identical

3. The outcome of one trial does not affect the outcome of another trial

- The trials are independent

4. The binomial random variable x is the number of times we see a success in n trials

The Binomial Distribution: Notation

- $\mathbf{n}=$ the number of trials
- $\mathbf{p}=$ the probability of success for any given trial (this will be the same for every trial)
- $\mathbf{q}=$ the probability of failure for any given trial - By complement rule: $q=1-p$
- $X=$ the number of successes for n trials
- \mathbf{X} is the random variable, \mathbf{n} and \mathbf{p} are parameters; \mathbf{x} will be the observation

Binomial Formula

- $P(X=x)=\binom{n}{x} p^{x} q^{n-x}=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- Recall: $n!=n *(n-1)^{*}(n-2)^{*} .$. *2*1
- Examples
- $5!=5 * 4 * 3 * 2 * 1=120$
- $0!=1$
- $5!/ 3!=5^{*} 4$

Binomial Calculations

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}=\operatorname{binompdf}(n, p, x)$
- $P(X \leq x)=\mathrm{P}(\mathrm{X}=\mathrm{x})+\mathrm{P}(\mathrm{X}=\mathrm{x}-1)+\cdots+\mathrm{P}(\mathrm{X}=0)=$ binomcdf($\mathrm{n}, \mathrm{p}, \mathrm{x}$)
- $P(X>x)=1-\mathrm{P}(\mathrm{X} \leq \mathrm{x})=1-\operatorname{binomcdf}(\mathrm{n}, \mathrm{p}, \mathrm{x})$
- PDF gives us probability of one point, the CDF gives us the probability of that point and everything less.
- Recall cumulative frequency from Chapter 2

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $\mathrm{n}=10, \mathrm{p}=.5$: Bell shaped, but there’s empty space

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $\mathrm{n}=15, \mathrm{p}=.5$: Bell shaped, but there's still empty space

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $\mathrm{n}=20, \mathrm{p}=.5$: Bell shaped, but there's still empty space

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $\mathrm{n}=25, \mathrm{p}=.5$: Bell shaped, but there's still empty space

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $\mathrm{n}=30, \mathrm{p}=.5$: Bell shaped, but there's still empty space

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $\mathrm{n}=100, \mathrm{p}=.5$: Bell shaped, but there's still empty space

Shape of Binomial

- $P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$
- $n=1000, p=.5$: Bell shaped, and space is negligible

Shape of Binomial

$$
P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}
$$

- We will say that the binomial is bell-shaped if

$$
n * p \geq 15 \text { AND } n *(1-p) \geq 15
$$

- We will say that the binomial is not bell-shaped if either

$$
n * p<15 \text { OR } n *(1-p)<15
$$

Shape of Binomial for Graphs

n	p	$n^{*} p$	$n^{*}(1-p)$	Bell-Shaped?
10	.5	$10^{*} .5=5<15$	$10^{*}(1-.5)=5<15$	No
15	.5	$15^{*} .5=7.5<15$	$15^{*}(1-.5)=7.5<15$	No
20	.5	$20^{*} .5=10<15$	$20^{*}(1-.5)=10<15$	No
25	.5	$25^{*} .5=12.5<15$	$25^{*}(1-.5)=12.5<15$	No
30	.5	$30^{*} .5=15 \geq 15$	$30^{*}(1-.5)=15 \geq 15$	Yes
100	.5	$100^{*} .5=50 \geq 15$	$100^{*}(1-.5)=50 \geq 15$	Yes
1000	.5	$1000^{*} .5=500 \geq 15$	$1000^{*}(1-.5)=500 \geq 15$	Yes

Shape of More Complicated Binomials

n	p	$n^{*} p$	$n^{*}(1-p)$	Bell-Shaped?
10	.25	$10^{*} .25=2.5<15$	$10^{*}(1-.25)=7.5<15$	No
15	.25	$15^{*} .25=3.75<15$	$15^{*}(1-.25)=11.25<15$	No
20	.25	$20^{*} .25=5<15$	$20^{*}(1-.25)=15 \geq 15$	No
25	.25	$25^{*} .25=6.25<15$	$25^{*}(1-.25)=18.75 \geq 15$	No
30	.25	$30^{*} .25=7.5<15$	$30^{*}(1-.25)=22.5 \geq 15$	No
100	.25	$100^{*} .25=25 \geq 15$	$100^{*}(1-.25)=75 \geq 15$	Yes
1000	.25	$1000^{*} .25=250 \geq 15$	$1000^{*}(1-.25)=750 \geq 15$	Yes

Shape of a binomial

- For fixed p, as the sample size increases the probability distribution of X becomes bell shaped.
- We consider n to be large enough when
- $n * p>15$ AND $\mathrm{n} *(1-p) \geq 15$
- This will be very important as we transition to inferential statistics.

What Sample Size Do I Need?

- Say we have that the probability of a success is .45, i.e. $p=.45$. What sample size would we need to have to say that the binomial is bellshaped?

$$
\begin{aligned}
& n p \geq 15 \\
& n(.45) \geq 15 \\
& n \geq \frac{15}{.45} \\
& n \geq 33.3333
\end{aligned}
$$

$$
\begin{aligned}
& n(1-p) \geq 15 \\
& n(1-.45) \geq 15 \\
& n(.55) \geq 15 \\
& n \geq \frac{15}{.55} \\
& n \geq 27.2727
\end{aligned}
$$

- So, in order for both to be bigger than or equal to 15 we would need $n \geq 34$

Binomial Experiment - Example 1

- The two New England natives who founded Portland Oregon, Asa Lovejoy of Boston and Francis Pettygrove of Portland, Maine, both wanted to name the new city after their respective hometowns
- They decided to make the decision based on a best two-out-of-three coin toss.
- Let's say Pettygrove chose heads

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=\mathbf{3}$
$-p=.50$
$-q=1-p=1-.50=.50$
- Trials are identical - we flip the same coin each time
- Trials are independent as the outcome of one trial doesn't affect another

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=3$
$-p=.50$
$-q=1-p=1-.50=.50$
$-n p=3 * .5=1.5<15$ and
$n(1-p)=3 *(1-.5)=1.5<15$
- Because $n p<15$ and $n(1-p)<15$ we cannot say that the binomial is bell-shaped

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Because $n p<15$ and $n(1-p)<15$ we cannot say that the binomial is bell-shaped

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=3, \mathrm{p}=.50, \mathrm{q}=.50$
- Find the probability that there are exactly 2 heads

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=2)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x} \\
& \quad \begin{aligned}
& 2!(3-2)! \\
&\left.=\frac{3!}{2!}\right)^{2}(.5)^{3-2}=\frac{3!}{2!* 1!}(.5)^{2}(.5)^{1} \\
&=\frac{3 * 2 * 1}{(2 * 1) *(1)}(.25)(.5) \\
&=.375=\operatorname{binompd} f(2, .5,2)
\end{aligned}
\end{aligned}
$$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times

$$
\mathrm{P}(\mathrm{X}=2)=.375
$$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=3, \mathrm{p}=.50, \mathrm{q}=.50$
- Find the probability that there are exactly 3 heads

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=3)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x} \\
& \qquad \begin{aligned}
& 3!(3-3)! \\
&=5)^{3}(.5)^{3-3}=\frac{3!}{3!* 0!}(.5)^{3}(.5)^{0} \\
&=\frac{3 * 2 * 1}{3 * 2 * 1}(.125)(1) \\
&=.125=\operatorname{binompd}(3, .5,3)
\end{aligned}
\end{aligned}
$$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times

$$
\mathrm{P}(\mathrm{X}=3)=.125
$$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=3, \mathrm{p}=.50, \mathrm{q}=.50$
- Find the probability that Pettygrove wins
- i.e. Find the probability that there are at least 2 heads
$\mathrm{P}(\mathrm{X} \geq 2)=P(X=2)+P(X=3)=.375+.125=.5$
OR Using Complement Rule

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \geq 2)=1-P(X<2) \\
& =1-(P(X=1)+P(X=0)) \\
& =1-P(X \leq 1) \\
& =1-\operatorname{binomcdf}(3, .5,1)
\end{aligned}
$$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times

$$
P(X \geq 2)=.5
$$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=3, \mathrm{p}=.50, \mathrm{q}=.50$
- Find the probability that Pettygrove loses(there are less than 2 heads)
$\mathrm{P}(\mathrm{X}<2)=1-\mathrm{P}(\mathrm{X} \geq 2)$

$$
=1-(P(X=2)+P(X=3))=1-.5=.5
$$

OR Using Complement Rule
$P(X<2)=P(X=1)+P(X=0)$
$=\operatorname{binomcdf}(1, .5,1)=.5$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times

$$
\mathrm{P}(\mathrm{X}<2)=.5
$$

Binomial Experiment - Example 1

- The probability that Pettygrove wins $\mathrm{P}(\mathrm{X} \geq 2)=.5$
- The probability that Lovejoy wins $\mathrm{P}(\mathrm{X}<2)=.5$
- We see that this is a fair game - they each have a 50% chance of winning
- So, why not just flip the coin once?

Binomial Experiment - Example 2

- After looking at some survey data you find that the probability that someone rates your attractiveness a two or higher is .80. Consider a class of 48 students.
- $\mathrm{n}=48, \mathrm{p}=0.8, \mathrm{q}=1-\mathrm{p}=1-0.8=0.2$
- Trials are independent - one student's decision does not affect the others
- Let's go ahead and assume identical trials even though it can be argued that some people prefer different things

Binomial Experiment - Example 2

- Consider a class of 48 students.
- Let X be the number of heads that occur
$-\mathbf{n}=48, \mathrm{p}=0.8, \mathrm{q}=1-\mathrm{p}=1-0.8=0.2$
$-n p=48 * .8=38.4 \geq 15$ and
$n(1-p)=48 *(1-.8)=9.6<15$
- Because $n(1-p)<15$ we cannot say that the binomial is bell-shaped

Binomial Experiment - Example 2

- Consider a class of 48 students.
- Because $n(1-p)<15$ we cannot say that the binomial is bell-shaped

Binomial Experiment - Example 2

- Consider a class of 48 students.
- $\mathrm{n}=48, \mathrm{p}=0.8, \mathrm{q}=1-\mathrm{p}=1-0.8=0.2$
- The probability that exactly half of the 48 students think you were at least a two out of ten

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=24)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x} \\
& \quad=\frac{48!}{24!(48-24)!}(.8)^{24}(.2)^{48-24}=\frac{48!}{24!24!}(.8)^{24}(.2)^{24} \\
& =.00000255=\text { dbinom }(24,48, .8)
\end{aligned}
$$

- This is an almost impossible event - we expect half of the class to think you were at least a two out of ten almost 0% of the time

Binomial Experiment - Example 2

- Consider a class of 48 students.

$$
\mathrm{P}(\mathrm{X}=24)=.00000255
$$

(Not visible because the probability is so small)

Binomial Experiment - Example 2

- Consider a class of 48 students.
- $n=48, p=0.8, q=1-p=1-0.8=0.2$
- The probability that at least one of the students in your class think you were at least a two out of ten

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \geq 1)=P(X=1)+P(X=2)+\ldots P(X=48) \\
& \quad=1-P(X=0)=1-\operatorname{dbinom}(0,48, .8) \\
& \quad=.999999999 \ldots
\end{aligned}
$$

- This is an almost certain event - we expect at least half of the class to think you were at least a two out of ten more than 99% of the time

Helpful Rules for Discrete Distributions

- $\mathrm{P}(X<x)=P(X \leq x-1)$
- $\mathrm{P}(X \geq x)=1-P(X<x)$
- $\mathrm{P}(X>x)=1-P(X \leq x)$
- $\mathrm{P}\left(x_{1}<X<x_{2}\right)=P\left(X<x_{2}\right)-P\left(X \leq x_{1}\right)$
- $\mathrm{P}\left(x_{1}<X \leq x_{2}\right)=P\left(X \leq x_{2}\right)-P\left(X \leq x_{1}\right)$
- $\mathrm{P}\left(x_{1} \leq X<x_{2}\right)=P\left(X<x_{2}\right)-P\left(X<x_{1}\right)$
- $\mathrm{P}\left(x_{1} \leq X \leq x_{2}\right)=P\left(X \leq x_{2}\right)-P\left(X<x_{1}\right)$

Mean and Variance For A Binomial

- So far we have found probabilities for the binomial distribution. This gave us the ability to check the feasibility of certain outcomes or groups of outcomes.
- Here, we find what to expect!
- Expected Value $=\mathbf{E}(\mathbf{X})=\mathbf{M e a n}=\boldsymbol{\mu}_{x}=n * p$
- Standard Deviation $=\sigma_{x}=\sqrt{n * p * q}$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X be the number of heads that occur
$-\mathrm{n}=3$
$-p=.50$
$-q=1-p=1-.50=.50$
- Mean $=n * p=3 * .50=1.50$
- On average, we expect between 1 and 2 heads in three flips

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X bet the number of heads that occur
$-\mathrm{n}=3$
$-p=.50$
$-q=1-p=1-.50=.50$
- Standard Deviation $=\sqrt{3 * .50 * .50}=.75$

Binomial Experiment - Example 1

- A fair one-cent piece is flipped three times
- Let X bet the number of heads that occur
$-\mathrm{n}=3, \mathrm{p}=.50, \mathrm{q}=.50$
- Mean $=n * p=3 * .50=1.50$
- Standard Deviation $=\sqrt{3 * .50 * .50}=.75$

Binomial Experiment - Example 2

- Considering a class of 48 students.
- $\mathrm{n}=48$
- $p=0.8$
- $\mathrm{q}=1-\mathrm{p}=1-0.8=0.2$
- Mean $=n * p=48 * 0.80=38$
- So, on average we expect about 38 of the 48 students to think you're at least a two out of ten.

Binomial Experiment - Example 2

- Considering a class of 48 students.
- $\mathrm{n}=48$
- $p=0.8$
- $q=1-p=1-0.8=0.2$
- Standard Deviation $=\sqrt{48 * .80 * .20}$

$$
=2.7713
$$

Binomial Experiment - Example 2

- Considering a class of 48 students.
- $\mathrm{n}=48, \mathrm{p}=0.8, \mathrm{q}=1-\mathrm{p}=1-0.8=0.2$
- Mean $=n * p=48 * 0.80=38$
- Standard Deviation $=\sqrt{48 * .80 * .20}$

$$
=2.7713
$$

- Since we cannot say this binomial is bellshaped we cannot use the empirical rule but we can use Chebyshev's Rule

Why don't I get this?

- Probabilities and expected values are much different than what we did in Chapter 2 where you found the sample mean by adding up values and dividing.
- Expected value in the sense of the binomial distribution is similar to the discrete distribution - it is what we would expect to see on average if we completed the binomial experiment infinitely many times
- i.e. if I flipped a coin three times and kept track of how many heads I saw in each experiment over infinitely many experiments I would expect the average over all of those experiments to be $n^{*} p=1.5$

Watch These!

- Binomial walk-through
- https://www.youtube.com/watch?v=qlzC1-9PwQo
- TI-83/TI-84 BinomPDF
- https://www.youtube.com/watch?v=6d1cKIEfqbQ
- TI-83/TI-84 BinomCDF
- https://www.youtube.com/watch?v=uCZWamr75XE

Binompdf on your TI Calculator

- Binomial $\mathrm{P}\left(\mathrm{X}=\mathrm{x}^{*}\right)$
- INPUT:
- Press $2^{\text {nd }}$
- Press VARS
- Scroll down using \downarrow to highlight 'A:binompdf('
- Press ENTER
- Type in your value for n
- Press,
- Type in your value for p
- Press,
- Type in your value for x^{*}
- Press)
- Press ENTER
- OUTPUT: $\mathrm{P}\left(\mathrm{X}=\mathrm{X}^{*}\right)=$ the numerical output.

Binomcdf on your TI Calculator

- Binomial $\mathrm{P}\left(\mathrm{X} \leq \mathrm{x}^{*}\right)$
- INPUT:
- Press $2^{\text {nd }}$
- Press VARS
- Scroll down using \downarrow to highlight "B:binomcdf('
- Press ENTER
- Type in your value for n
- Press,
- Type in your value for p
- Press,
- Type in your value for x^{*}
- Press)
- Press ENTER
- OUTPUT: $\mathrm{P}\left(\mathrm{X} \leq \mathrm{X}^{*}\right)=$ the numerical output.

Binomial on StatCrunch

- Open StatCrunch
- Stat \rightarrow Calculators \rightarrow Binomial \rightarrow Enter n and $p \rightarrow$ insert whichever probability statement you need \rightarrow Compute

The Binomial Distribution

- We look at a categorical variable with two outcomes
- We consider one a success and zero a failure

x		$P(x)$
Success (denoted as 1)	This is what we're interested in, even if it isn't particularly successful in the sense of the English word	$p=$ Probability of a 'success'
Failure (denoted as 0)	This is the other case - what we aren't interested in ,even if it isn't particularly a failure in the sense of the English word	$q=$ Probability of a 'failure' = 1- p

Binomial Distribution

Assumptions	1. 2.	It consists of \boldsymbol{n} trials with binary output They are denoted 1 or 0 , or success and failure The probability of success on each trial is the same The trials are identical The outcome of one trial does not affect the outcome of another trial The trials are independent
Formula		$P(X=x)=\frac{n!}{x!(n-x)!} p^{x} q^{n-x}$ We will say that the binomial is bell-shaped if $n * p \geq 15 \text { AND } n *(1-p) \geq 15$
Expected value of Binomial X		$\boldsymbol{\mu}_{x}=E(X)=n * p$
Standard Deviation of Binomial X		$\sigma_{x}=\sqrt{n * p * q}$

